1 | #pragma once
|
---|
2 |
|
---|
3 | #include <math.h>
|
---|
4 | #include <stdlib.h>
|
---|
5 | #include <exception>
|
---|
6 | #include <assert.h>
|
---|
7 |
|
---|
8 | #include "mars_meta.h"
|
---|
9 |
|
---|
10 | namespace mars
|
---|
11 | {
|
---|
12 | const double PI = 3.14159265358979323846264338327950;
|
---|
13 |
|
---|
14 | template <typename T>
|
---|
15 | inline T SQ(const T & a) { return a * a; }
|
---|
16 | template <typename T>
|
---|
17 | inline T CUBE(const T & a) { return a * a * a; }
|
---|
18 | inline int RAND(const int n) { return (rand() * (n - 1) + (RAND_MAX / 2)) / RAND_MAX; }
|
---|
19 | inline double toRadians(int deg) { return static_cast <double> (deg) / 180.0 * PI; }
|
---|
20 | inline short toDegrees(double rad) { return static_cast <short> (rad / PI * 180.0); }
|
---|
21 | template< typename T >
|
---|
22 | inline T RANDf(const T a = 1.0f) { return static_cast <T> (rand()) / static_cast <T> (RAND_MAX) * a; }
|
---|
23 | inline int RNDi(double f) { return static_cast <int> (f < 0 ? f - 0.5f : f + 0.5f); } // TODO: Optimize tertiary operator
|
---|
24 | template < typename T >
|
---|
25 | inline T ALIGN(const T x, const T unit)
|
---|
26 | {
|
---|
27 | assert(unit > 0);
|
---|
28 | return x - (x % unit) - (x < 0 ? unit : 0);
|
---|
29 | }
|
---|
30 | template <typename T>
|
---|
31 | inline T AVG(const T a, const T b) { return (a + b) / static_cast< T > (2); }
|
---|
32 | template< typename T, typename UT >
|
---|
33 | inline UT WRAP(const T x, const UT w) { return static_cast< UT > ((x % static_cast< T > (w) + static_cast< T > (w)) % w); }
|
---|
34 |
|
---|
35 | static const double ABSCISSAE_5[5][2] = {
|
---|
36 | -0.90617984593866399280, 0.23692688505618908751,
|
---|
37 | -0.53846931010568309104, 0.47862867049936646804,
|
---|
38 | 0.0, 0.56888888888888888889,
|
---|
39 | +0.53846931010568309104, 0.47862867049936646804,
|
---|
40 | +0.90617984593866399280, 0.23692688505618908751
|
---|
41 | };
|
---|
42 |
|
---|
43 | static const char LOG2_TABLE_256[256] =
|
---|
44 | {
|
---|
45 | #define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
|
---|
46 | -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
|
---|
47 | LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
|
---|
48 | LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
|
---|
49 | };
|
---|
50 |
|
---|
51 | inline unsigned int LOG2(const unsigned int v)
|
---|
52 | {
|
---|
53 | unsigned int t, tt;
|
---|
54 |
|
---|
55 | if (tt = v >> 16)
|
---|
56 | return (t = tt >> 8) ? 24 + LOG2_TABLE_256[t] : 16 + LOG2_TABLE_256[tt];
|
---|
57 | else
|
---|
58 | return (t = v >> 8) ? 8 + LOG2_TABLE_256[t] : LOG2_TABLE_256[v];
|
---|
59 | }
|
---|
60 |
|
---|
61 | class CalcEx : public std::exception {};
|
---|
62 |
|
---|
63 | template <typename T, typename Derived, unsigned NN>
|
---|
64 | class GaussLegendreInt
|
---|
65 | {
|
---|
66 | private:
|
---|
67 | template<unsigned N>
|
---|
68 | T abscissa (const unsigned int i, const unsigned int j, quantity<N>) const
|
---|
69 | {
|
---|
70 | throw CalcEx ();
|
---|
71 | }
|
---|
72 | T abscissa (const unsigned int i, const unsigned int j, quantity<5>) const
|
---|
73 | {
|
---|
74 | return static_cast <T> (ABSCISSAE_5[i][j]);
|
---|
75 | }
|
---|
76 |
|
---|
77 | template <unsigned N>
|
---|
78 | T abscissa (const unsigned int i, const unsigned int j) const
|
---|
79 | {
|
---|
80 | return abscissa(i, j, quantity<N>());
|
---|
81 | }
|
---|
82 |
|
---|
83 | template <unsigned N>
|
---|
84 | T summate (const T val, const T a, const T b, quantity<N>) const
|
---|
85 | {
|
---|
86 | const Derived * derived = static_cast <const Derived *> (this);
|
---|
87 | return val + summate <N - 1> (
|
---|
88 | abscissa <NN> (N - 1, 1) *
|
---|
89 | derived->f(
|
---|
90 | (b + a) / 2 +
|
---|
91 | ((b - a) / 2) * abscissa <NN> (N - 1, 0)
|
---|
92 | ),
|
---|
93 | a, b
|
---|
94 | );
|
---|
95 | }
|
---|
96 | T summate (const T val, const T a, const T b, quantity<0>) const { return val; }
|
---|
97 |
|
---|
98 | template <unsigned N>
|
---|
99 | T summate (const T val, const T a, const T b) const
|
---|
100 | {
|
---|
101 | return summate(val, a, b, quantity<N>());
|
---|
102 | }
|
---|
103 |
|
---|
104 | protected:
|
---|
105 | inline T compute (const T a, const T b) const
|
---|
106 | {
|
---|
107 | return ((b - a) / 2) * summate <NN> (0, a, b);
|
---|
108 | }
|
---|
109 | };
|
---|
110 |
|
---|
111 | template <typename T, class EqLeft, class EqRight>
|
---|
112 | class SolutionEquation
|
---|
113 | {
|
---|
114 | private:
|
---|
115 | const EqLeft & _left;
|
---|
116 | const EqRight & _right;
|
---|
117 |
|
---|
118 | public:
|
---|
119 | inline SolutionEquation (const EqLeft & left, const EqRight & right)
|
---|
120 | : _left(left), _right(right) {}
|
---|
121 |
|
---|
122 | inline const T f(const T x) const { return _left.f(x) - _right.f(x); }
|
---|
123 | inline const T df(const T x) const { return _left.df(x) - _right.df(x); }
|
---|
124 | inline const T f2(const T x) const { return _left.f2(x) - _right.f2(x); }
|
---|
125 | };
|
---|
126 |
|
---|
127 | template <typename T, class Eq, unsigned NN = 5>
|
---|
128 | class NewtonsMethod
|
---|
129 | {
|
---|
130 | private:
|
---|
131 | const Eq & _eq;
|
---|
132 |
|
---|
133 | template <unsigned N> T iterate (const T x0, quantity<N>) const
|
---|
134 | {
|
---|
135 | return iterate <N-1> (x0 - _eq.f(x0) / _eq.df(x0));
|
---|
136 | }
|
---|
137 | T iterate (const T x0, quantity<0>) const { return x0; }
|
---|
138 |
|
---|
139 | template <unsigned N> T iterate (const T x0) const
|
---|
140 | {
|
---|
141 | return iterate(x0, quantity<N>());
|
---|
142 | }
|
---|
143 |
|
---|
144 | inline NewtonsMethod (const Eq & eq)
|
---|
145 | : _eq(eq) {}
|
---|
146 |
|
---|
147 | inline T solve (const T x0) const { return iterate <NN> (x0); }
|
---|
148 |
|
---|
149 | public:
|
---|
150 | // TODO: Cache the result!
|
---|
151 | static inline T solve (const Eq & eq, const T x0) { return NewtonsMethod (eq).solve(x0); }
|
---|
152 | static inline T solve (const Eq & eq) { return NewtonsMethod (eq).solve(0); }
|
---|
153 | };
|
---|
154 |
|
---|
155 | template <typename T, class Eq, unsigned NN = 5>
|
---|
156 | class BisectMethod
|
---|
157 | {
|
---|
158 | private:
|
---|
159 | const Eq & _eq;
|
---|
160 |
|
---|
161 | template <unsigned N> T iterate (const T l, const T r, quantity<N>) const
|
---|
162 | {
|
---|
163 | T m = (l + r) / 2;
|
---|
164 |
|
---|
165 | if (_eq.f(l) * _eq.f(m) > 0)
|
---|
166 | return iterate <N-1> (m, r);
|
---|
167 | else
|
---|
168 | return iterate <N-1> (l, m);
|
---|
169 | }
|
---|
170 | T iterate (const T l, const T r, quantity<0>) const
|
---|
171 | {
|
---|
172 | return (r + l) / 2;
|
---|
173 | }
|
---|
174 |
|
---|
175 | template <unsigned N> T iterate (const T l, const T r) const
|
---|
176 | {
|
---|
177 | return iterate(l, r, quantity<N>());
|
---|
178 | }
|
---|
179 |
|
---|
180 | inline BisectMethod (const Eq & eq)
|
---|
181 | : _eq(eq) {}
|
---|
182 |
|
---|
183 | public:
|
---|
184 | static inline T solve (const Eq & eq, const T l, const T r) { return BisectMethod(eq).iterate <NN> (l, r); }
|
---|
185 | };
|
---|
186 |
|
---|
187 | template <typename T, int DIR = +1>
|
---|
188 | class ParabolicFn
|
---|
189 | {
|
---|
190 | public:
|
---|
191 | T scale, broadness, depth;
|
---|
192 |
|
---|
193 | ParabolicFn () : scale(0), broadness(0), depth(0) {}
|
---|
194 | ParabolicFn (const T scale, const T broadness, const T depth)
|
---|
195 | : scale(scale), broadness(broadness), depth(depth) {}
|
---|
196 |
|
---|
197 | inline const T f(const T x) const { return DIR * (mars::SQ(x / scale) / broadness + depth) * scale; }
|
---|
198 | inline const T f(const T x, const T y) const
|
---|
199 | {
|
---|
200 | return DIR * ((mars::SQ(x / scale) + mars::SQ(y / scale)) / broadness + depth) * scale;
|
---|
201 | }
|
---|
202 | inline const T invf (const T y) const { return sqrt((y / scale * DIR - depth) * broadness) * scale; }
|
---|
203 | inline const T df(const T x) const { return DIR * (2 * x / mars::SQ(scale)) / broadness * scale; }
|
---|
204 | inline const T f2(const T x) const { return DIR * (mars::CUBE(x) / 3 / mars::SQ(scale) / broadness + x * depth) * scale; }
|
---|
205 | };
|
---|
206 |
|
---|
207 | template <typename T, unsigned NN = 5>
|
---|
208 | class ErrorFn
|
---|
209 | {
|
---|
210 | private:
|
---|
211 | T _sqrtPI;
|
---|
212 |
|
---|
213 | template <unsigned L> static T computeEpsilon () { return computeEpsilon(quantity<L>()); }
|
---|
214 | template <unsigned M> static T s (const T j) {
|
---|
215 | return s(j, quantity<M>());
|
---|
216 | }
|
---|
217 | template <unsigned L> static T computeEpsilon (quantity<L>) { return s<L>(0); }
|
---|
218 | inline static T computeEpsilon (quantity<0>) { return 1; }
|
---|
219 | template <unsigned L, unsigned M> static T s (const T j, quantity<L>, quantity<M>)
|
---|
220 | { return j + s<M - 1> (computeEpsilon<L - 1 - (M-1)>() * computeEpsilon<M-1>() / (((M-1) + 1)*(2 * (M-1) + 1))); }
|
---|
221 | template <unsigned M > static T s (const T j, quantity<0>, quantity<M>) { return j; }
|
---|
222 |
|
---|
223 | template <unsigned N> T prod (const T j, const T z, quantity<N>) const
|
---|
224 | {
|
---|
225 | const int k = (NN - N + 1);
|
---|
226 |
|
---|
227 | return j * prod <N - 1> (-(2 * k - 1) * z * z / (k * (2 * k + 1)), z);
|
---|
228 | }
|
---|
229 | inline T prod (const T j, const T z, quantity<0>) const { return j; }
|
---|
230 | template <unsigned N> T prod (const T j, const T z) const { return prod(j, z, quantity<N>()); }
|
---|
231 |
|
---|
232 | template <unsigned N> T taylor (const T j, const T z, quantity<N>) const
|
---|
233 | { return j + taylor<N - 1> (prod <N>(1, z), z); }
|
---|
234 | inline T taylor (const T j, const T z, quantity<0>) const { return j; }
|
---|
235 | template <unsigned N> T taylor (const T j, const T z) const { return taylor(j, z, quantity<N>()); }
|
---|
236 |
|
---|
237 | template <unsigned N> T invfsum (const T j, const T z, quantity<N>) const
|
---|
238 | { return j + invfsum <N - 1> (computeEpsilon<N-1>() / (2*(N-1) + 1) * pow(static_cast <T> (z * _sqrtPI/2), static_cast <int> (2*(N-1) + 1)), z); }
|
---|
239 | inline T invfsum (const T j, const T z, quantity<0>) const { return j; }
|
---|
240 | template <unsigned N> T invfsum (const T j, const T z) const { return invfsum(j, z, quantity<N>()); }
|
---|
241 |
|
---|
242 | static T createRootPI () { return static_cast< T > (sqrt(mars::PI)); }
|
---|
243 |
|
---|
244 | public:
|
---|
245 | T scale, depth, shift;
|
---|
246 |
|
---|
247 | ErrorFn ()
|
---|
248 | : scale(0), depth(0), shift(0), _sqrtPI(createRootPI()) {}
|
---|
249 | ErrorFn (const T frScale, const T fDepth, const T fShift)
|
---|
250 | : scale(frScale), depth (fDepth), shift (fShift), _sqrtPI(createRootPI()) {}
|
---|
251 |
|
---|
252 | inline ErrorFn & operator = (const ErrorFn & copy)
|
---|
253 | {
|
---|
254 | const_cast< T & > (scale) = copy.scale;
|
---|
255 | const_cast< T & > (depth) = copy.depth;
|
---|
256 | const_cast< T & > (shift) = copy.shift;
|
---|
257 | return *this;
|
---|
258 | }
|
---|
259 |
|
---|
260 | inline const T f (const T x) const { return (static_cast <T> (2.0) / _sqrtPI * taylor <NN> (0, (x - shift) / scale) + depth) * scale; } // TODO: Redundant factors for readability
|
---|
261 | inline const T invf (const T y) const { return invfsum <NN + 1> (0, y / scale - depth) * scale + shift; }
|
---|
262 | inline const T df (const T x) const { return static_cast <T> (2.0) / _sqrtPI * exp(-SQ((x - shift) / scale)) * scale; }
|
---|
263 | inline const T f2 (const T x) const { return (exp(-SQ((x - shift) / scale)) / _sqrtPI + depth * ((x - shift) / scale)) * scale; }
|
---|
264 | };
|
---|
265 |
|
---|
266 | template <typename T, int DIR = +1, unsigned NN = 5>
|
---|
267 | class GaussianFn
|
---|
268 | {
|
---|
269 | private:
|
---|
270 | ErrorFn <T, NN> _errorfn;
|
---|
271 |
|
---|
272 | protected:
|
---|
273 | inline const T f_base (const T x) const
|
---|
274 | {
|
---|
275 | return f_base(x, broadness, amplitude);
|
---|
276 | }
|
---|
277 |
|
---|
278 | inline static const T f_base(const T x, const T broadness, const T amplitude)
|
---|
279 | {
|
---|
280 | return amplitude * exp(
|
---|
281 | -mars::SQ(x) /
|
---|
282 | (2.0f * mars::SQ(broadness))
|
---|
283 | );
|
---|
284 | }
|
---|
285 | inline static const T f_base(const T x, const T y, const T bx, const T by, const T amplitude)
|
---|
286 | {
|
---|
287 | return amplitude * exp(
|
---|
288 | -(
|
---|
289 | mars::SQ(x) / (2.0f * mars::SQ(bx)) +
|
---|
290 | mars::SQ(y) / (2.0f * mars::SQ(by))
|
---|
291 | )
|
---|
292 | );
|
---|
293 | }
|
---|
294 |
|
---|
295 | public:
|
---|
296 | const T scale, broadness, depth, amplitude;
|
---|
297 |
|
---|
298 | GaussianFn ()
|
---|
299 | : scale(0), amplitude(0), broadness(0), depth(0) {}
|
---|
300 | GaussianFn (const T scale, const T amplitude = 1, const T broadness = 1, const T depth = 0)
|
---|
301 | : scale(scale), amplitude(amplitude), broadness(broadness), depth(depth),
|
---|
302 | _errorfn (scale, depth, 0) {}
|
---|
303 |
|
---|
304 | inline GaussianFn & operator = (const GaussianFn & copy)
|
---|
305 | {
|
---|
306 | _errorfn = copy._errorfn;
|
---|
307 | const_cast< T & > (scale) = copy.scale;
|
---|
308 | const_cast< T & > (broadness) = copy.broadness;
|
---|
309 | const_cast< T & > (depth) = copy.depth;
|
---|
310 | const_cast< T & > (amplitude) = copy.amplitude;
|
---|
311 | return *this;
|
---|
312 | }
|
---|
313 |
|
---|
314 | inline const T f(const T x) const
|
---|
315 | {
|
---|
316 | return DIR * (scale * (f_base(x / scale, broadness, amplitude) + depth));
|
---|
317 | }
|
---|
318 | inline static const T f (const T x, const T scale, const T broadness, const T amplitude, const T depth)
|
---|
319 | {
|
---|
320 | return DIR * scale * (f_base(x / scale, broadness, amplitude) + depth);
|
---|
321 | }
|
---|
322 |
|
---|
323 | inline const T f(const T x, const T y) const
|
---|
324 | {
|
---|
325 | return DIR * scale * (f_base(x / scale, y / scale, broadness, broadness, amplitude) + depth);
|
---|
326 | }
|
---|
327 |
|
---|
328 | // Inverse function, warning this is computationally intensive
|
---|
329 | // Valid for all y > 0
|
---|
330 | inline const T invf (const T y) const
|
---|
331 | {
|
---|
332 | return sqrt(log(pow((y / scale * DIR - depth) / amplitude, -2*mars::SQ(broadness)))) * scale;
|
---|
333 | }
|
---|
334 |
|
---|
335 | // The integral of the Gaussian is the error-function, but we will represent it using the iterative Taylor series,
|
---|
336 | // which is the product of a sequence. We will implement this using a recursive template algorithm.
|
---|
337 | inline const T f2(const T x) const
|
---|
338 | {
|
---|
339 | return _errorfn.f(x);
|
---|
340 | }
|
---|
341 |
|
---|
342 | // First-derivative of the Gaussian is the Gaussian multiplied by the first Hermite polynomial (or x)
|
---|
343 | inline const T df (const T x) const
|
---|
344 | {
|
---|
345 | return DIR * (scale * (f_base(x / scale) * (x / scale)));
|
---|
346 | }
|
---|
347 | };
|
---|
348 |
|
---|
349 | template <typename T, int DIR>
|
---|
350 | class InvertedSquareFn
|
---|
351 | {
|
---|
352 | public:
|
---|
353 | T scale, broadness, depth;
|
---|
354 |
|
---|
355 | inline InvertedSquareFn (const T scale, const T broadness, const T depth)
|
---|
356 | : scale(scale), broadness (broadness), depth(depth) {}
|
---|
357 |
|
---|
358 | inline const T f(const T x) const { return DIR * ((1.0f / mars::SQ(x / scale)) * broadness + depth) * scale; }
|
---|
359 | inline const T f(const T x, const T y) const { return DIR * ((1.0f / (mars::SQ(x / scale) + mars::SQ(y / scale))) * broadness + depth) * scale; }
|
---|
360 | inline const T invf(const T y) const { return sqrt(broadness / ((DIR * y / scale) - depth)) * scale; }
|
---|
361 | inline const T df(const T x) const { return DIR * (-2.0f / (mars::CUBE(x) / mars::SQ(scale))) * broadness * scale; }
|
---|
362 | inline const T f2(const T x) const { return DIR * (-1.0f / (x / scale) * broadness + (x / scale) * depth) * scale; }
|
---|
363 | };
|
---|
364 |
|
---|
365 | template <typename T, int DIR>
|
---|
366 | class CosineFn
|
---|
367 | {
|
---|
368 | public:
|
---|
369 | T scale, period, amplitude, depth;
|
---|
370 |
|
---|
371 | inline CosineFn (const T scale, const T period, const T amplitude, const T depth)
|
---|
372 | : scale(scale), period (period), amplitude(amplitude), depth(depth) {}
|
---|
373 |
|
---|
374 | inline const T f(const T x) const { return DIR * (cos(x * period / scale) / amplitude + depth) * scale; }
|
---|
375 | inline const T invf(const T y) const { return acos(((DIR * y / scale) - depth) * amplitude) * scale / period; }
|
---|
376 | inline const T df(const T x) const { return DIR * (-sin(x * period / scale) * period / scale) / amplitude * scale; }
|
---|
377 | inline const T f2(const T x) const { return DIR * (sin(x * period / scale) / amplitude / (period / scale) + (x / scale)) * scale; }
|
---|
378 | };
|
---|
379 |
|
---|
380 | namespace FnVar
|
---|
381 | {
|
---|
382 | enum Type
|
---|
383 | {
|
---|
384 | Normal = 0,
|
---|
385 | Derivative = 1,
|
---|
386 | Inverse = 2,
|
---|
387 | Integral = 3
|
---|
388 | };
|
---|
389 |
|
---|
390 | enum Flag
|
---|
391 | {
|
---|
392 | Flag_Normal = 1 << Normal,
|
---|
393 | Flag_Derivative = 1 << Derivative,
|
---|
394 | Flag_Inverse = 1 << Inverse,
|
---|
395 | Flag_Integral = 1 << Integral
|
---|
396 | };
|
---|
397 | };
|
---|
398 |
|
---|
399 | template <typename T, typename Fn, FnVar::Flag FLAGS = FnVar::Flag_Normal>
|
---|
400 | class CacheFnProxy
|
---|
401 | {
|
---|
402 | public:
|
---|
403 | CacheFnProxy (Fn fn, const T fMin, const T fMax, const unsigned short nResolution)
|
---|
404 | : _fn(fn), _fMin(fMin), _fMax(fMax),
|
---|
405 | _fStep ((fMax - fMin) / static_cast< T > (nResolution)),
|
---|
406 | _nResolution(nResolution + 1)
|
---|
407 | {
|
---|
408 | assert(fMax > fMin);
|
---|
409 | assert(_fStep > 0);
|
---|
410 |
|
---|
411 | _ffTable[FnVar::Normal] =
|
---|
412 | _ffTable[FnVar::Derivative] =
|
---|
413 | _ffTable[FnVar::Inverse] =
|
---|
414 | _ffTable[FnVar::Integral] = NULL;
|
---|
415 |
|
---|
416 | processFlag< FLAGS & FnVar::Flag_Normal > ();
|
---|
417 | processFlag< FLAGS & FnVar::Flag_Derivative > ();
|
---|
418 | processFlag< FLAGS & FnVar::Flag_Inverse > ();
|
---|
419 | processFlag< FLAGS & FnVar::Flag_Integral > ();
|
---|
420 | }
|
---|
421 |
|
---|
422 | inline const unsigned short getResolution () const { return _nResolution - 1; }
|
---|
423 |
|
---|
424 | inline const T f(const T x) const { return interpolate<FnVar::Normal>(x); }
|
---|
425 | inline const T invf(const T y) const { return interpolate<FnVar::Inverse>(y); }
|
---|
426 | inline const T df(const T x) const { return interpolate<FnVar::Derivative>(x); }
|
---|
427 | inline const T f2(const T x) const { return interpolate<FnVar::Integral>(x); }
|
---|
428 |
|
---|
429 | ~CacheFnProxy()
|
---|
430 | {
|
---|
431 | using namespace FnVar;
|
---|
432 |
|
---|
433 | delete [] _ffTable[FnVar::Normal];
|
---|
434 | delete [] _ffTable[FnVar::Derivative];
|
---|
435 | delete [] _ffTable[FnVar::Inverse];
|
---|
436 | delete [] _ffTable[FnVar::Integral];
|
---|
437 | }
|
---|
438 |
|
---|
439 | private:
|
---|
440 | Fn _fn;
|
---|
441 |
|
---|
442 | T _fMin, _fMax, _fStep;
|
---|
443 | unsigned short _nResolution;
|
---|
444 |
|
---|
445 | T * _ffTable[4];
|
---|
446 |
|
---|
447 | template< int I >
|
---|
448 | inline const T interpolate(const T x) const
|
---|
449 | {
|
---|
450 | assert(_ffTable[I] != NULL);
|
---|
451 |
|
---|
452 | const T
|
---|
453 | mx = (x - _fMin) / _fStep,
|
---|
454 | x0 = floor(mx);
|
---|
455 | const unsigned int
|
---|
456 | nx0 = static_cast< unsigned int > (mx);
|
---|
457 |
|
---|
458 | assert(nx0 >= 0 && nx0 < _nResolution);
|
---|
459 |
|
---|
460 | return
|
---|
461 | _ffTable[I][nx0] + (_ffTable[I][nx0 + 1] - _ffTable[I][nx0]) * (mx - x0);
|
---|
462 | }
|
---|
463 |
|
---|
464 | template< int FLAG > void processFlag () { processFlag(quantity<FLAG>()); }
|
---|
465 | void processFlag (quantity<0>) {}
|
---|
466 |
|
---|
467 | void processFlag (quantity<FnVar::Flag_Normal>)
|
---|
468 | { computeTable< &Fn::f, FnVar::Normal > (); }
|
---|
469 | void processFlag (quantity<FnVar::Flag_Derivative>)
|
---|
470 | { computeTable< &Fn::df, FnVar::Derivative > (); }
|
---|
471 | void processFlag (quantity<FnVar::Flag_Integral>)
|
---|
472 | { computeTable< &Fn::f2, FnVar::Integral > (); }
|
---|
473 | void processFlag (quantity<FnVar::Flag_Inverse>)
|
---|
474 | { computeTable< &Fn::invf, FnVar::Inverse > (); }
|
---|
475 |
|
---|
476 | template< const T (Fn::* FnFn)(const T) const, int I >
|
---|
477 | void computeTable ()
|
---|
478 | {
|
---|
479 | if (FLAGS & (1 << I))
|
---|
480 | {
|
---|
481 | _ffTable[I] = new T[_nResolution];
|
---|
482 | for (unsigned int i = 0; i < _nResolution; ++i)
|
---|
483 | _ffTable[I][i] = (_fn.*FnFn)(_fMin + _fStep * static_cast< T > (i));
|
---|
484 | } else
|
---|
485 | _ffTable[I] = NULL;
|
---|
486 | }
|
---|
487 | };
|
---|
488 |
|
---|
489 | template< typename T >
|
---|
490 | class ParabolicScale : protected ParabolicFn< float >
|
---|
491 | {
|
---|
492 | private:
|
---|
493 | const size_t _nCount;
|
---|
494 | const float _fScale;
|
---|
495 | float * _fIndex;
|
---|
496 |
|
---|
497 | public:
|
---|
498 | ParabolicScale(const size_t nCount, const float fFactor = 0.5f, const float fScale = 1.0f)
|
---|
499 | : _nCount (nCount), _fScale(fScale), _fIndex(new float[nCount]), ParabolicFn(static_cast< float > (nCount - 1), 1.0f / fFactor, 0.0f)
|
---|
500 | {
|
---|
501 | const float fTotalArea = f2(static_cast< float > (nCount));
|
---|
502 | for (size_t c = 0; c < nCount; ++c)
|
---|
503 | _fIndex[c] = f2(static_cast< float > (c)) / fTotalArea * fScale;
|
---|
504 | }
|
---|
505 | ~ParabolicScale()
|
---|
506 | { delete [] _fIndex; }
|
---|
507 |
|
---|
508 | inline T operator () (const float f) const
|
---|
509 | {
|
---|
510 | assert (f >= 0.0f && f <= _fScale);
|
---|
511 | for (size_t c = 0; c < _nCount; ++c)
|
---|
512 | if (f < _fIndex[c])
|
---|
513 | return static_cast< T > (c);
|
---|
514 |
|
---|
515 | return static_cast< T > (_nCount - 1);
|
---|
516 | }
|
---|
517 | inline float operator [] (const T enps) const
|
---|
518 | { return _fIndex[enps]; }
|
---|
519 | };
|
---|
520 |
|
---|
521 | template< typename T, T COUNT >
|
---|
522 | class StaticParabolicScale : public ParabolicScale< T >
|
---|
523 | {
|
---|
524 | public:
|
---|
525 | StaticParabolicScale (const float fFactor = 0.5f, const float fScale = 1.0f)
|
---|
526 | : ParabolicScale<T>(COUNT, fFactor, fScale) {}
|
---|
527 | };
|
---|
528 | }
|
---|