[88089e4] | 1 | /**
|
---|
| 2 | * This file, Mars Linag, is released under the MIT license
|
---|
| 3 | */
|
---|
[80a6a52] | 4 | #ifndef __MARSLINEARALGEBRA_H__
|
---|
| 5 | #define __MARSLINEARALGEBRA_H__
|
---|
| 6 |
|
---|
| 7 | #include <exception>
|
---|
| 8 | #include <math.h>
|
---|
| 9 |
|
---|
| 10 | #ifdef _DEBUG
|
---|
| 11 | #include <assert.h>
|
---|
| 12 | #endif
|
---|
| 13 |
|
---|
| 14 | #include "mars_meta.h"
|
---|
| 15 | #include "mars_calc.h"
|
---|
| 16 |
|
---|
| 17 | namespace mars
|
---|
| 18 | {
|
---|
| 19 | class LinAlgEx : public std::exception
|
---|
| 20 | {
|
---|
| 21 | };
|
---|
| 22 |
|
---|
| 23 | class MathOverrides
|
---|
| 24 | {
|
---|
| 25 | public:
|
---|
| 26 | static inline int sqrt (const int x)
|
---|
| 27 | { return static_cast <int> (::sqrt (static_cast <double> (x))); }
|
---|
| 28 | static inline short sqrt (const short x)
|
---|
| 29 | { return static_cast <short> (::sqrtf (static_cast <float> (x))); }
|
---|
| 30 | static inline long sqrt (const long x)
|
---|
| 31 | { return static_cast <long> (::sqrt (static_cast <long> (x))); }
|
---|
| 32 | static inline long double sqrt (const long double x)
|
---|
| 33 | { return static_cast <long double> (::sqrt (static_cast <long double> (x))); }
|
---|
| 34 | static inline double sqrt (const double x)
|
---|
| 35 | { return static_cast <double> (::sqrt (static_cast <double> (x))); }
|
---|
| 36 | static inline float sqrt (const float x)
|
---|
| 37 | { return static_cast <float> (::sqrtf (static_cast <float> (x))); }
|
---|
| 38 |
|
---|
| 39 | /*
|
---|
| 40 | static inline int atan2 (const int x, const int y)
|
---|
| 41 | { return static_cast <int> (::atan2 (static_cast <double> (x), static_cast <double> (y))); }
|
---|
| 42 | static inline short atan2 (const short x, const short y)
|
---|
| 43 | { return static_cast <short> (::atan2f (static_cast <float> (x), static_cast <float> (y))); }
|
---|
| 44 | static inline long double atan2 (const long double x, const long double y)
|
---|
| 45 | { return static_cast <long double> (::atan2 (static_cast <long double> (x), static_cast <long double> (y))); }
|
---|
| 46 | static inline double atan2 (const double x, const double y)
|
---|
| 47 | { return static_cast <double> (::atan2 (static_cast <double> (x), static_cast <double> (y))); }
|
---|
| 48 | static inline float atan2 (const float x, const float y)
|
---|
| 49 | { return static_cast <float> (::atan2f (static_cast <float> (x), static_cast <float> (y))); }
|
---|
| 50 |
|
---|
| 51 | static inline int acos (const int x)
|
---|
| 52 | { return static_cast <int> (::acos (static_cast <double> (x))); }
|
---|
| 53 | static inline short acos (const short x)
|
---|
| 54 | { return static_cast <short> (::acosf (static_cast <float> (x))); }
|
---|
| 55 | static inline long double acos (const long double x)
|
---|
| 56 | { return static_cast <long double> (::acos (static_cast <long double> (x))); }
|
---|
| 57 | static inline double acos (const double x)
|
---|
| 58 | { return static_cast <double> (::acos (static_cast <double> (x))); }
|
---|
| 59 | static inline float acos (const float x)
|
---|
| 60 | { return static_cast <float> (::acosf (static_cast <float> (x))); }*/
|
---|
| 61 | };
|
---|
| 62 |
|
---|
| 63 | // Linear optimization technique, taken from: http://www.flipcode.com/archives/Faster_Vector_Math_Using_Templates.shtml
|
---|
| 64 | // Operator controllers:
|
---|
| 65 |
|
---|
| 66 | template <typename T>
|
---|
| 67 | struct VOpAdd
|
---|
| 68 | {
|
---|
| 69 | typedef T ResultType;
|
---|
| 70 |
|
---|
| 71 | template <int I, typename LVal, typename RVal>
|
---|
| 72 | static inline T evalOp (const LVal & lval, const RVal & rval)
|
---|
| 73 | { return lval.template eval<I>() + rval.template eval<I>(); }
|
---|
| 74 | };
|
---|
| 75 | template <typename T>
|
---|
| 76 | struct VOpSub
|
---|
| 77 | {
|
---|
| 78 | typedef T ResultType;
|
---|
| 79 |
|
---|
| 80 | template <int I, typename LVal, typename RVal>
|
---|
| 81 | static inline T evalOp (const LVal & lval, const RVal & rval)
|
---|
| 82 | { return lval.template eval<I>() - rval.template eval<I>(); }
|
---|
| 83 | };
|
---|
| 84 | template <typename T, int D>
|
---|
| 85 | struct VOpScale
|
---|
| 86 | {
|
---|
| 87 | typedef T ResultType;
|
---|
| 88 |
|
---|
| 89 | template <int I, typename LVal, typename RVal>
|
---|
| 90 | static inline T evalOp (const LVal & lval, const RVal & rval)
|
---|
| 91 | { return lval.template eval<I>() * rval.template eval<I>(); }
|
---|
| 92 | };
|
---|
| 93 | template <typename T, int D>
|
---|
| 94 | struct VOpContract
|
---|
| 95 | {
|
---|
| 96 | typedef T ResultType;
|
---|
| 97 |
|
---|
| 98 | template <int I, typename LVal, typename RVal>
|
---|
| 99 | static inline T evalOp (const LVal & lval, const RVal & rval)
|
---|
| 100 | { return lval.template eval<I>() / rval.template eval<I>(); }
|
---|
| 101 | };
|
---|
| 102 | template <typename T>
|
---|
| 103 | struct VOpNegate
|
---|
| 104 | {
|
---|
| 105 | typedef T ResultType;
|
---|
| 106 |
|
---|
| 107 | template <int I, typename RVal>
|
---|
| 108 | static inline T evalOp (const RVal & rval)
|
---|
| 109 | { return -rval.template eval<I>(); }
|
---|
| 110 | };
|
---|
| 111 | template <typename T, typename TNew>
|
---|
| 112 | struct VOpCast
|
---|
| 113 | {
|
---|
| 114 | typedef TNew ResultType;
|
---|
| 115 |
|
---|
| 116 | template <int I, typename RVal>
|
---|
| 117 | static inline TNew evalOp (const RVal & rval)
|
---|
| 118 | { return static_cast< TNew > (rval.template eval<I>()); }
|
---|
| 119 | };
|
---|
| 120 |
|
---|
| 121 | template <typename T, int D>
|
---|
| 122 | struct VExprTagDim
|
---|
| 123 | {
|
---|
| 124 | typedef T Precision;
|
---|
| 125 | typedef VOpAdd< T > OpAdd;
|
---|
| 126 | typedef VOpSub< T > OpSub;
|
---|
| 127 | typedef VOpScale< T, D > OpScale;
|
---|
| 128 | typedef VOpContract< T, D > OpContract;
|
---|
| 129 | typedef VOpNegate< T > OpNegate;
|
---|
| 130 |
|
---|
| 131 | enum { DIMENSION = D };
|
---|
| 132 | };
|
---|
| 133 |
|
---|
| 134 | template <typename T, typename Derived, int D>
|
---|
| 135 | class VBaseExpr : public VExprTagDim< T, D >
|
---|
| 136 | {
|
---|
| 137 | public:
|
---|
| 138 | typedef Derived ExprType;
|
---|
| 139 |
|
---|
| 140 | private:
|
---|
| 141 | template <typename Functor>
|
---|
| 142 | struct Reduce
|
---|
| 143 | {
|
---|
| 144 | template <unsigned I>
|
---|
| 145 | static inline const T go (const Functor & f, const Derived & expr) { return go(f, expr, quantity<I>()); }
|
---|
| 146 |
|
---|
| 147 | template <unsigned I>
|
---|
| 148 | static inline const T go (const Derived & expr) { return go(expr, quantity<I>()); }
|
---|
| 149 |
|
---|
| 150 | private:
|
---|
| 151 | template <unsigned I>
|
---|
| 152 | static inline const T go (const Functor & f, const Derived & expr, quantity<I>)
|
---|
| 153 | {
|
---|
| 154 | return f.run<I-1>(expr.template eval<I-1>()) + go<I-1>(f, expr);
|
---|
| 155 | }
|
---|
| 156 | static inline const T go (const Functor &, const Derived &, quantity<0>)
|
---|
| 157 | { return static_cast <T> (0); }
|
---|
| 158 |
|
---|
| 159 | template <unsigned I>
|
---|
| 160 | static inline const T go (const Derived & expr, quantity<I>)
|
---|
| 161 | {
|
---|
| 162 | return Functor::template run<I-1>(expr.template eval<I-1>()) + go<I-1>(expr);
|
---|
| 163 | }
|
---|
| 164 | static inline const T go (const Derived &, quantity<0>)
|
---|
| 165 | { return static_cast <T> (0); }
|
---|
| 166 | };
|
---|
| 167 |
|
---|
| 168 | template <typename Expr>
|
---|
| 169 | struct Equivalence
|
---|
| 170 | {
|
---|
| 171 | template <unsigned I>
|
---|
| 172 | static inline bool test (const Derived & lval, const Expr & rval) { return test(lval, rval, quantity<I>()); }
|
---|
| 173 |
|
---|
| 174 | private:
|
---|
| 175 | template <unsigned I>
|
---|
| 176 | static inline bool test (const Derived & lval, const Expr & rval, quantity<I>)
|
---|
| 177 | {
|
---|
| 178 | return (lval.template eval<I-1>() == rval.template eval<I-1>()) && test<I-1>(lval, rval);
|
---|
| 179 | }
|
---|
| 180 | static inline bool test (const Derived &, const Expr &, quantity<0>) { return true; }
|
---|
| 181 | };
|
---|
| 182 |
|
---|
| 183 | public:
|
---|
| 184 | template <typename Functor> inline const T reduce () const
|
---|
| 185 | { return Reduce<Functor>::template go<D>(*static_cast <const Derived *> (this)); }
|
---|
| 186 |
|
---|
| 187 | template <typename Functor> inline const T reduce (const Functor & f) const
|
---|
| 188 | { return Reduce<Functor>::template go<D>(f, *static_cast <const Derived *> (this)); }
|
---|
| 189 |
|
---|
| 190 | template <typename Expr>
|
---|
| 191 | inline bool equals (const Expr & expr, const typename Expr::ExprType * = 0) const
|
---|
| 192 | { return Equivalence< Expr >::template test<D>(*static_cast <const Derived *> (this), expr); }
|
---|
| 193 |
|
---|
| 194 | template <typename V>
|
---|
| 195 | inline bool equals (const V & v, const typename V::VectorType * = 0) const
|
---|
| 196 | { return v == *static_cast <const Derived *> (this); }
|
---|
| 197 | };
|
---|
| 198 |
|
---|
| 199 | struct VRedSqFn
|
---|
| 200 | {
|
---|
| 201 | template <int I, typename T>
|
---|
| 202 | static inline T run (const T & val) { return SQ(val); }
|
---|
| 203 | };
|
---|
| 204 |
|
---|
| 205 | template <typename LVal>
|
---|
| 206 | class VRedDotEFn
|
---|
| 207 | {
|
---|
| 208 | private:
|
---|
| 209 | const typename LVal::ExprType _lval;
|
---|
| 210 |
|
---|
| 211 | public:
|
---|
| 212 | inline VRedDotEFn (const LVal & lval)
|
---|
| 213 | : _lval(lval) {}
|
---|
| 214 |
|
---|
| 215 | template <int I, typename T>
|
---|
| 216 | inline T run (const T & val) const { return val * _lval.template eval<I>(); }
|
---|
| 217 | };
|
---|
| 218 |
|
---|
| 219 | template <typename V>
|
---|
| 220 | class VRedDotVFn
|
---|
| 221 | {
|
---|
| 222 | private:
|
---|
| 223 | const typename V::VectorType _v;
|
---|
| 224 |
|
---|
| 225 | public:
|
---|
| 226 | inline VRedDotVFn (const V & v)
|
---|
| 227 | : _v(v) {}
|
---|
| 228 |
|
---|
| 229 | template <int I, typename T>
|
---|
| 230 | inline T run (const T & val) const { return val * _v.template element<I>(); }
|
---|
| 231 | };
|
---|
| 232 |
|
---|
| 233 | // Expression builders:
|
---|
| 234 | // Argument
|
---|
| 235 | template <typename T, int D>
|
---|
| 236 | class VExpArg : public VBaseExpr<T, VExpArg< T, D >, D >
|
---|
| 237 | {
|
---|
| 238 | private:
|
---|
| 239 | const T _arg;
|
---|
| 240 |
|
---|
| 241 | public:
|
---|
| 242 | inline VExpArg (const T & argg)
|
---|
| 243 | : _arg (argg) {}
|
---|
| 244 |
|
---|
| 245 | template <int I>
|
---|
| 246 | inline const T eval () const
|
---|
| 247 | { return _arg; }
|
---|
| 248 | };
|
---|
| 249 |
|
---|
| 250 | // Vector
|
---|
| 251 | template <typename V, int D>
|
---|
| 252 | class VExpArgVec : public VBaseExpr< typename V::Precision, VExpArgVec< typename V::VectorType, D >, D >
|
---|
| 253 | {
|
---|
| 254 | private:
|
---|
| 255 | const V _v;
|
---|
| 256 |
|
---|
| 257 | public:
|
---|
| 258 | inline VExpArgVec (const V & v)
|
---|
| 259 | : _v (v) {}
|
---|
| 260 |
|
---|
| 261 | template <int I>
|
---|
| 262 | inline const typename V::Precision eval () const
|
---|
| 263 | { return _v.template element<I>(); }
|
---|
| 264 | };
|
---|
| 265 |
|
---|
| 266 | // Pairing
|
---|
| 267 | template <class LVal, typename RVal, class Op, int D>
|
---|
| 268 | class VExpr2 : public VBaseExpr<typename Op::ResultType, VExpr2< typename LVal::ExprType, typename RVal::ExprType, Op, D >, D >
|
---|
| 269 | {
|
---|
| 270 | private:
|
---|
| 271 | const LVal _lval;
|
---|
| 272 | const RVal _rval;
|
---|
| 273 |
|
---|
| 274 | public:
|
---|
| 275 | typedef VExpr2< typename LVal::ExprType, typename RVal::ExprType, Op, D > ExprType;
|
---|
| 276 | typedef VBaseExpr<typename Op::ResultType, VExpr2< typename LVal::ExprType, typename RVal::ExprType, Op, D >, D > Base;
|
---|
| 277 | typedef typename Op::ResultType Precision;
|
---|
| 278 |
|
---|
| 279 | inline VExpr2 (const LVal & lval, const RVal & rval)
|
---|
| 280 | : _lval(lval), _rval(rval) {}
|
---|
| 281 |
|
---|
| 282 | template <int I>
|
---|
| 283 | inline const typename Op::ResultType eval () const
|
---|
| 284 | { return Op::template evalOp<I>(_lval, _rval); }
|
---|
| 285 |
|
---|
| 286 | public:
|
---|
| 287 | // Scalar
|
---|
| 288 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpScale< Precision, D >, D>
|
---|
| 289 | operator * (const Precision & n) const
|
---|
| 290 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpScale< Precision, D >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 291 |
|
---|
| 292 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpContract< Precision, D >, D>
|
---|
| 293 | operator / (const Precision & n) const
|
---|
| 294 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpContract< Precision, D >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 295 |
|
---|
| 296 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpAdd< Precision >, D>
|
---|
| 297 | operator + (const Precision & n) const
|
---|
| 298 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpAdd< Precision >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 299 |
|
---|
| 300 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpSub< Precision >, D>
|
---|
| 301 | operator - (const Precision & n) const
|
---|
| 302 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpSub< Precision >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 303 |
|
---|
| 304 | // Vector
|
---|
| 305 | template <typename V>
|
---|
| 306 | inline const VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpAdd< Precision >, D>
|
---|
| 307 | operator + (const V & v) const
|
---|
| 308 | { return VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpAdd< Precision >, D> (*this, VExpArgVec< V, D > (v)); }
|
---|
| 309 |
|
---|
| 310 | template <typename V>
|
---|
| 311 | inline const VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpSub< Precision >, D>
|
---|
| 312 | operator - (const V & v) const
|
---|
| 313 | { return VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpSub< Precision >, D> (*this, VExpArgVec< V, D > (v)); }
|
---|
| 314 |
|
---|
| 315 | // Other expressions
|
---|
| 316 | template <typename RVal2>
|
---|
| 317 | inline const VExpr2< ExprType, typename RVal2::ExprType, VOpAdd< Precision >, D>
|
---|
| 318 | operator + (const RVal2 & rval) const
|
---|
| 319 | { return VExpr2< ExprType, typename RVal2::ExprType, VOpAdd< Precision >, D> (*this, rval); }
|
---|
| 320 |
|
---|
| 321 | template <typename RVal2>
|
---|
| 322 | inline const VExpr2< ExprType, typename RVal2::ExprType, VOpSub< Precision >, D>
|
---|
| 323 | operator - (const RVal2 & rval) const
|
---|
| 324 | { return VExpr2< ExprType, typename RVal2::ExprType, VOpSub< Precision >, D> (*this, rval); }
|
---|
| 325 |
|
---|
| 326 | template <typename RVal2>
|
---|
| 327 | inline bool operator == (const RVal2 & rval) const { return equals(rval); }
|
---|
| 328 | };
|
---|
| 329 |
|
---|
| 330 | // Mono
|
---|
| 331 | template <typename RVal, typename Op, int D>
|
---|
| 332 | class VExpr1 : public VBaseExpr<typename Op::ResultType, VExpr1< typename RVal::ExprType, Op, D >, D >
|
---|
| 333 | {
|
---|
| 334 | private:
|
---|
| 335 | const RVal _rval;
|
---|
| 336 |
|
---|
| 337 | public:
|
---|
| 338 | typedef VExpr1< typename RVal::ExprType, Op, D > ExprType;
|
---|
| 339 | typedef typename Op::ResultType Precision;
|
---|
| 340 |
|
---|
| 341 | inline VExpr1 (const typename RVal::ExprType & rval)
|
---|
| 342 | : _rval(rval) {}
|
---|
| 343 |
|
---|
| 344 | template <int I>
|
---|
| 345 | inline const typename Op::ResultType eval () const
|
---|
| 346 | { return Op::template evalOp<I>(_rval); }
|
---|
| 347 |
|
---|
| 348 | public:
|
---|
| 349 |
|
---|
| 350 | // Scalar
|
---|
| 351 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpScale< Precision, D >, D>
|
---|
| 352 | operator * (const Precision & n) const
|
---|
| 353 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpScale< Precision, D >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 354 |
|
---|
| 355 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpContract< Precision, D >, D>
|
---|
| 356 | operator / (const Precision & n) const
|
---|
| 357 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpContract< Precision, D >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 358 |
|
---|
| 359 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpAdd< Precision >, D>
|
---|
| 360 | operator + (const Precision & n) const
|
---|
| 361 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpAdd< Precision >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 362 |
|
---|
| 363 | inline const VExpr2< ExprType, VExpArg< Precision, D >, VOpSub< Precision >, D>
|
---|
| 364 | operator - (const Precision & n) const
|
---|
| 365 | { return VExpr2< ExprType, VExpArg< Precision, D >, VOpSub< Precision >, D> (*this, VExpArg< Precision, D > (n)); }
|
---|
| 366 |
|
---|
| 367 | // Vector
|
---|
| 368 | template <typename V>
|
---|
| 369 | inline const VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpAdd< Precision >, D>
|
---|
| 370 | operator + (const V & v) const
|
---|
| 371 | { return VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpAdd< Precision >, D> (*this, VExpArgVec< V, D > (v)); }
|
---|
| 372 |
|
---|
| 373 | template <typename V>
|
---|
| 374 | inline const VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpSub< Precision >, D>
|
---|
| 375 | operator - (const V & v) const
|
---|
| 376 | { return VExpr2< ExprType, VExpArgVec< typename V::VectorType, D >, VOpSub< Precision >, D> (*this, VExpArgVec< V, D > (v)); }
|
---|
| 377 |
|
---|
| 378 | // Other expressions
|
---|
| 379 | template <typename RVal2>
|
---|
| 380 | inline const VExpr2< ExprType, typename RVal2::ExprType, VOpAdd< Precision >, D>
|
---|
| 381 | operator + (const RVal2 & rval) const
|
---|
| 382 | { return VExpr2< ExprType, typename RVal2::ExprType, VOpAdd< Precision >, D> (*this, rval); }
|
---|
| 383 |
|
---|
| 384 | template <typename RVal2>
|
---|
| 385 | inline const VExpr2< ExprType, typename RVal2::ExprType, VOpSub< Precision >, D>
|
---|
| 386 | operator - (const RVal2 & rval) const
|
---|
| 387 | { return VExpr2< ExprType, typename RVal2::ExprType, VOpSub< Precision >, D> (*this, rval); }
|
---|
| 388 |
|
---|
| 389 | template <typename RVal2>
|
---|
| 390 | inline bool operator == (const RVal2 & rval) const { return equals(rval); }
|
---|
| 391 | };
|
---|
| 392 |
|
---|
| 393 | template <typename T, typename V, typename Desc, int D >
|
---|
| 394 | struct VectorDefsTag : public VExprTagDim< T, D >
|
---|
| 395 | {
|
---|
| 396 | typedef VectorDefsTag<T , V, Desc, D> VectorTagType;
|
---|
| 397 | typedef V VectorType;
|
---|
| 398 | typedef VExpArg< T, D > Arg;
|
---|
| 399 | typedef VExpArgVec< V, D > ArgVec;
|
---|
| 400 |
|
---|
| 401 | template <int I>
|
---|
| 402 | inline const T element () const
|
---|
| 403 | {
|
---|
| 404 | #ifdef _DEBUG
|
---|
| 405 | int i = I;
|
---|
| 406 | assert(I < D);
|
---|
| 407 | #endif
|
---|
| 408 | return reinterpret_cast <const T *> (static_cast <const Desc *> (this)) [I];
|
---|
| 409 | }
|
---|
| 410 | };
|
---|
| 411 |
|
---|
| 412 | template <typename T, typename V, typename Desc, int D >
|
---|
| 413 | class ArithmeticVector : public VectorDefsTag< T, V, Desc, D >
|
---|
| 414 | {
|
---|
| 415 | public:
|
---|
| 416 | //typedef ArithmeticVector< T, V, Desc, D > ArithmeticVectorType;
|
---|
| 417 | typedef VectorDefsTag< T, V, Desc, D > Base;
|
---|
| 418 | typedef VExprTagDim< T, D > ExprTag;
|
---|
| 419 |
|
---|
| 420 | using typename Base::Arg;
|
---|
| 421 | using typename Base::ArgVec;
|
---|
| 422 | using typename ExprTag::OpNegate;
|
---|
| 423 | using typename ExprTag::OpScale;
|
---|
| 424 | using typename ExprTag::OpContract;
|
---|
| 425 | using typename ExprTag::OpAdd;
|
---|
| 426 | using typename ExprTag::OpSub;
|
---|
| 427 |
|
---|
| 428 | typedef VExpr1< ArgVec, OpNegate, D > ExpNeg;
|
---|
| 429 | typedef VExpr2< ArgVec, Arg, OpScale, D > ExpScale;
|
---|
| 430 | typedef VExpr2< ArgVec, Arg, OpContract, D > ExpContract;
|
---|
| 431 | typedef VExpr2< ArgVec, Arg, OpAdd, D > ExpAddScalar;
|
---|
| 432 | typedef VExpr2< ArgVec, ArgVec, OpAdd, D > ExpAddVector;
|
---|
| 433 | typedef VExpr2< ArgVec, Arg, OpSub, D > ExpSubScalar;
|
---|
| 434 | typedef VExpr2< ArgVec, ArgVec, OpSub, D > ExpSubVector;
|
---|
| 435 |
|
---|
| 436 | template <typename Expr>
|
---|
| 437 | struct ExpOpExp
|
---|
| 438 | {
|
---|
| 439 | typedef VExpr2< ArgVec, typename Expr::ExprType, OpAdd, D > Add;
|
---|
| 440 | typedef VExpr2< ArgVec, typename Expr::ExprType, OpSub, D > Sub;
|
---|
| 441 | };
|
---|
| 442 |
|
---|
| 443 | // Negation
|
---|
| 444 | inline ExpNeg neg () const
|
---|
| 445 | { return ExpNeg (ArgVec(* static_cast <const V *> (this))); }
|
---|
| 446 |
|
---|
| 447 | // Scaling
|
---|
| 448 | inline ExpScale scale (const T & n) const
|
---|
| 449 | { return ExpScale (ArgVec(* static_cast <const V *> (this)), Arg(n)); }
|
---|
| 450 |
|
---|
| 451 | // Contraction
|
---|
| 452 | inline ExpContract contract (const T & n) const
|
---|
| 453 | { return ExpContract (ArgVec(* static_cast <const V *> (this)), Arg(n)); }
|
---|
| 454 |
|
---|
| 455 | // Add scalar
|
---|
| 456 | inline ExpAddScalar add (const T & n) const
|
---|
| 457 | { return ExpAddScalar (ArgVec(* static_cast <const V *> (this)), Arg(n)); }
|
---|
| 458 |
|
---|
| 459 | // Add vector
|
---|
| 460 | inline ExpAddVector add (const V & v) const
|
---|
| 461 | { return ExpAddVector (ArgVec(* static_cast <const V *> (this)), ArgVec(v)); }
|
---|
| 462 |
|
---|
| 463 | // Subtract scalar
|
---|
| 464 | inline ExpSubScalar sub (const T & n) const
|
---|
| 465 | { return ExpSubScalar (ArgVec(* static_cast <const V *> (this)), Arg(n)); }
|
---|
| 466 |
|
---|
| 467 | // Subtract vector
|
---|
| 468 | inline ExpSubVector sub (const V & v) const
|
---|
| 469 | { return ExpSubVector (ArgVec(* static_cast <const V *> (this)), ArgVec(v)); }
|
---|
| 470 | };
|
---|
| 471 |
|
---|
| 472 | template <typename T, typename V>
|
---|
| 473 | struct DescV2 : public ArithmeticVector< T, V, DescV2< T, V >, 2 >
|
---|
| 474 | {
|
---|
| 475 | typedef ArithmeticVector< T, V, DescV2< T, V >, 2 > Base;
|
---|
| 476 |
|
---|
| 477 | T x, y;
|
---|
| 478 |
|
---|
| 479 | inline DescV2 ()
|
---|
| 480 | : x(0), y(0) {}
|
---|
| 481 | inline DescV2 (const T x, const T y)
|
---|
| 482 | : x(x), y(y) {}
|
---|
| 483 |
|
---|
| 484 | template <typename E, typename Vv>
|
---|
| 485 | inline DescV2 (const DescV2 <E, Vv> & copy)
|
---|
| 486 | : x(static_cast <T> (copy.x)),
|
---|
| 487 | y(static_cast <T> (copy.y)) {}
|
---|
| 488 |
|
---|
| 489 | template <typename Exp>
|
---|
| 490 | inline V & operator = (const Exp & expr) const
|
---|
| 491 | {
|
---|
| 492 | x = expr.template eval<0>();
|
---|
| 493 | y = expr.template eval<1>();
|
---|
| 494 | return * static_cast <const V *> (this);
|
---|
| 495 | }
|
---|
| 496 | };
|
---|
| 497 |
|
---|
| 498 | template <typename T, typename V>
|
---|
| 499 | struct DescV3 : public ArithmeticVector< T, V, DescV3< T, V >, 3 >
|
---|
| 500 | {
|
---|
| 501 | typedef ArithmeticVector< T, V, DescV3< T, V >, 3 > Base;
|
---|
| 502 |
|
---|
| 503 | T x, y, z;
|
---|
| 504 |
|
---|
| 505 | inline DescV3 ()
|
---|
| 506 | : x(0), y(0), z(0) {}
|
---|
| 507 | inline DescV3 (const T x, const T y, const T z)
|
---|
| 508 | : x(x), y(y), z(z) {}
|
---|
| 509 |
|
---|
| 510 | template <typename E, typename Vv>
|
---|
| 511 | inline DescV3 (const DescV3 <E, Vv> & copy)
|
---|
| 512 | : x(static_cast <T> (copy.x)),
|
---|
| 513 | y(static_cast <T> (copy.y)),
|
---|
| 514 | z(static_cast <T> (copy.z)) {}
|
---|
| 515 |
|
---|
| 516 | template <typename Exp>
|
---|
| 517 | inline V & operator = (const Exp & expr) const
|
---|
| 518 | {
|
---|
| 519 | x = expr.template eval<0>();
|
---|
| 520 | y = expr.template eval<1>();
|
---|
| 521 | z = expr.template eval<2>();
|
---|
| 522 | return * static_cast <const V *> (this);
|
---|
| 523 | }
|
---|
| 524 | };
|
---|
| 525 |
|
---|
| 526 | template <typename T, typename V>
|
---|
| 527 | struct DescQ : public VectorDefsTag< T, V, DescQ< T, V >, 3 >
|
---|
| 528 | {
|
---|
| 529 | typedef VectorDefsTag< T, V, DescQ< T, V >, 3 > Base;
|
---|
| 530 |
|
---|
| 531 | T x, y, z, w;
|
---|
| 532 |
|
---|
| 533 | inline DescQ ()
|
---|
| 534 | : x(0), y(0), z(0), w(0) {}
|
---|
| 535 | inline DescQ (const T x, const T y, const T z, const T w)
|
---|
| 536 | : x(x), y(y), z(z), w(w) {}
|
---|
| 537 |
|
---|
| 538 | template <typename Vv>
|
---|
| 539 | inline DescQ (const DescV3< T, Vv> & v)
|
---|
| 540 | : x(v.x), y(v.y), z(v.z), w(0) {}
|
---|
| 541 |
|
---|
| 542 | template <typename Vv>
|
---|
| 543 | inline DescQ (const T s, const DescV3< T, Vv> & v)
|
---|
| 544 | : x(v.x), y(v.y), z(v.z), w(s) {}
|
---|
| 545 |
|
---|
| 546 | template <typename E>
|
---|
| 547 | inline DescQ (const DescQ <E, V> & copy)
|
---|
| 548 | : x(static_cast <T> (copy.x)),
|
---|
| 549 | y(static_cast <T> (copy.y)),
|
---|
| 550 | z(static_cast <T> (copy.z)),
|
---|
| 551 | w(static_cast <T> (copy.w)) {}
|
---|
| 552 | };
|
---|
| 553 |
|
---|
| 554 | template <typename T> class vector3D;
|
---|
| 555 | template <typename T> class SphericalCoords;
|
---|
| 556 | template <typename T> class PolarCoords;
|
---|
| 557 | template <typename T> class CylindricalCoords;
|
---|
| 558 |
|
---|
| 559 | // *** Vector 2D class template ***
|
---|
| 560 | template <typename T>
|
---|
| 561 | class vector2D : public DescV2< T, vector2D< T > >, private MathOverrides
|
---|
| 562 | {
|
---|
| 563 | private:
|
---|
| 564 | typedef DescV2< T, vector2D< T > > Base;
|
---|
| 565 |
|
---|
| 566 | public:
|
---|
| 567 | template <typename Exp>
|
---|
| 568 | inline vector2D (const Exp & expr, const typename Exp::ExprType * dummy = 0)
|
---|
| 569 | : DescV2< T, vector2D< T > >(expr.template eval<0>(), expr.template eval<1>()) {}
|
---|
| 570 |
|
---|
| 571 | inline vector2D ()
|
---|
| 572 | : DescV2< T, vector2D< T > >() {}
|
---|
| 573 | inline vector2D (const T x, const T y)
|
---|
| 574 | : DescV2< T, vector2D< T > >(x, y) {}
|
---|
| 575 | template <typename E>
|
---|
| 576 | inline vector2D (const vector2D <E> & other)
|
---|
| 577 | : DescV2< T, vector2D< T > >(other) {}
|
---|
| 578 |
|
---|
| 579 | // BEGIN ArithmeticVector INHERITANCE {
|
---|
| 580 | // Binary expression mappings
|
---|
| 581 | template <typename Expr>
|
---|
| 582 | inline typename Base::template ExpOpExp<typename Expr::ExprType>::Add operator + (const Expr & rval) const
|
---|
| 583 | { return typename Base::template ExpOpExp<typename Expr::ExprType>::Add (typename Base::ArgVec(*this), rval); }
|
---|
| 584 |
|
---|
| 585 | template <typename Expr>
|
---|
| 586 | inline typename Base::template ExpOpExp<typename Expr::ExprType>::Sub operator - (const Expr & rval) const
|
---|
| 587 | { return typename Base::template ExpOpExp<typename Expr::ExprType>::Sub (typename Base::ArgVec(*this), rval); }
|
---|
| 588 |
|
---|
| 589 | template <typename Expr>
|
---|
| 590 | inline typename enable_ifb< has_def< typename Expr::ExprType >::value, bool >::Type operator == (const Expr & rval) const
|
---|
| 591 | { return rval.equals(*this); }
|
---|
| 592 |
|
---|
| 593 | // Import dependent types
|
---|
| 594 | using typename Base::ExpNeg;
|
---|
| 595 | using typename Base::ExpScale;
|
---|
| 596 | using typename Base::ExpContract;
|
---|
| 597 | using typename Base::ExpAddScalar;
|
---|
| 598 | using typename Base::ExpAddVector;
|
---|
| 599 | using typename Base::ExpSubScalar;
|
---|
| 600 | using typename Base::ExpSubVector;
|
---|
| 601 |
|
---|
| 602 | using typename Base::VectorType;
|
---|
| 603 |
|
---|
| 604 | // Basic binary mappings
|
---|
| 605 | inline ExpNeg operator - () const { return this->neg(); }
|
---|
| 606 | inline ExpScale operator * (const T & n) const { return this->scale(n); }
|
---|
| 607 | inline ExpContract operator / (const T & n) const { return this->contract(n); }
|
---|
| 608 | inline ExpAddScalar operator + (const T & n) const { return this->add(n); }
|
---|
| 609 | inline ExpAddVector operator + (const VectorType & v) const { return this->add(v); }
|
---|
| 610 | inline ExpSubScalar operator - (const T & n) const { return this->sub(n); }
|
---|
| 611 | inline ExpSubVector operator - (const VectorType & v) const { return this->sub(v); }
|
---|
| 612 | // } END ArithmeticVector INHERITANCE
|
---|
| 613 |
|
---|
| 614 | // Dot-product
|
---|
| 615 | inline T operator * (const vector2D<T> & v) const
|
---|
| 616 | { return this->x * v.x + this->y * v.y; }
|
---|
| 617 |
|
---|
| 618 | // Maps to 2D-cross product below
|
---|
| 619 | inline const vector2D <T> operator & (const vector3D <T> & v) const
|
---|
| 620 | { return operator & (v.z); }
|
---|
| 621 |
|
---|
| 622 | // 2D-cross product (perpendicular)
|
---|
| 623 | inline const vector2D <T> operator & (const T s) const
|
---|
| 624 | { return vector2D<T> (this->y * s, -this->x * s); }
|
---|
| 625 |
|
---|
| 626 | // Accumulate scalar
|
---|
| 627 | inline const vector2D <T> & operator += (const T & n)
|
---|
| 628 | {
|
---|
| 629 | this->x += n;
|
---|
| 630 | this->y += n;
|
---|
| 631 | return *this;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | // Accumulate vector
|
---|
| 635 | inline const vector2D <T> & operator += (const vector2D<T> & v)
|
---|
| 636 | {
|
---|
| 637 | this->x += v.x;
|
---|
| 638 | this->y += v.y;
|
---|
| 639 |
|
---|
| 640 | return *this;
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | // Decrement vector
|
---|
| 644 | inline const vector2D <T> & operator -= (const vector2D<T> & v)
|
---|
| 645 | {
|
---|
| 646 | this->x -= v.x;
|
---|
| 647 | this->y -= v.y;
|
---|
| 648 |
|
---|
| 649 | return *this;
|
---|
| 650 | }
|
---|
| 651 | inline T magSQ () const { return static_cast <T> (SQ(this->x) + SQ(this->y)); }
|
---|
| 652 | inline T magnitude () const { return static_cast <T> (sqrt(magSQ())); }
|
---|
| 653 | inline vector2D <T> normalize () const
|
---|
| 654 | {
|
---|
| 655 | const T m = magnitude();
|
---|
| 656 |
|
---|
| 657 | if (m == 0)
|
---|
| 658 | return vector2D <T> (0,0);
|
---|
| 659 | else
|
---|
| 660 | return vector2D<T> (
|
---|
| 661 | this->x / m,
|
---|
| 662 | this->y / m
|
---|
| 663 | );
|
---|
| 664 | }
|
---|
| 665 |
|
---|
| 666 | template <typename J>
|
---|
| 667 | inline bool operator != (const vector2D <J> & other)
|
---|
| 668 | {
|
---|
| 669 | return this->x != other.x || this->y != other.y;
|
---|
| 670 | }
|
---|
| 671 | template <typename J>
|
---|
| 672 | inline bool operator == (const vector2D <J> & other)
|
---|
| 673 | {
|
---|
| 674 | return this->x == other.x && this->y == other.y;
|
---|
| 675 | }
|
---|
| 676 |
|
---|
| 677 | // Assignment
|
---|
| 678 | template <typename J>
|
---|
| 679 | inline vector2D <T> & operator = (const vector2D <J> & copy)
|
---|
| 680 | {
|
---|
| 681 | this->x = static_cast <T> (copy.x);
|
---|
| 682 | this->y = static_cast <T> (copy.y);
|
---|
| 683 |
|
---|
| 684 | return *this;
|
---|
| 685 | }
|
---|
| 686 |
|
---|
| 687 | // Scale vector
|
---|
| 688 | inline vector2D <T> & operator *= (const T factor)
|
---|
| 689 | {
|
---|
| 690 | this->x *= factor;
|
---|
| 691 | this->y *= factor;
|
---|
| 692 | return *this;
|
---|
| 693 | }
|
---|
| 694 |
|
---|
| 695 | // Contract vector
|
---|
| 696 | inline vector3D <T> & operator /= (const T factor)
|
---|
| 697 | {
|
---|
| 698 | this->x /= factor;
|
---|
| 699 | this->y /= factor;
|
---|
| 700 | return *this;
|
---|
| 701 | }
|
---|
| 702 |
|
---|
| 703 | // Length comparisons
|
---|
| 704 | inline bool operator < (const T len) const
|
---|
| 705 | { return magSQ() < SQ(len); }
|
---|
| 706 | inline bool operator > (const T len) const
|
---|
| 707 | { return magSQ() > SQ(len); }
|
---|
| 708 | inline bool operator <= (const T len) const
|
---|
| 709 | { return magSQ() <= SQ(len); }
|
---|
| 710 | inline bool operator >= (const T len) const
|
---|
| 711 | { return magSQ() >= SQ(len); }
|
---|
| 712 |
|
---|
| 713 | inline bool operator == (const vector2D< T > & b) const
|
---|
| 714 | { return this->x == b.x && this->y == b.y; }
|
---|
| 715 | };
|
---|
| 716 |
|
---|
| 717 | // *** Vector 3D class template ***
|
---|
| 718 | template <typename T>
|
---|
| 719 | class vector3D : public DescV3< T, vector3D< T > >, private MathOverrides
|
---|
| 720 | {
|
---|
| 721 | private:
|
---|
| 722 | typedef DescV3< T, vector3D< T > > Base;
|
---|
| 723 |
|
---|
| 724 | public:
|
---|
| 725 | template <typename Exp>
|
---|
| 726 | inline vector3D (const Exp & expr, const typename Exp::ExprType * dummy = 0)
|
---|
| 727 | : DescV3< T, vector3D< T > >(expr.template eval<0>(), expr.template eval<1>(), expr.template eval<2>()) {}
|
---|
| 728 |
|
---|
| 729 | template <typename E>
|
---|
| 730 | inline vector3D (const SphericalCoords< E > & sphc)
|
---|
| 731 | : DescV3< T, vector3D< T > >(
|
---|
| 732 | static_cast <T> (sphc.r * sin(sphc.zenith) * cos(sphc.azimuth)),
|
---|
| 733 | static_cast <T> (sphc.r * sin(sphc.zenith) * sin(sphc.azimuth)),
|
---|
| 734 | static_cast <T> (sphc.r * cos(sphc.zenith))
|
---|
| 735 | ) {}
|
---|
| 736 |
|
---|
| 737 | inline vector3D ()
|
---|
| 738 | : DescV3< T, vector3D< T > >() {}
|
---|
| 739 | inline vector3D (const T x, const T y, const T z)
|
---|
| 740 | : DescV3< T, vector3D< T > >(x, y, z) {}
|
---|
| 741 |
|
---|
| 742 | template <typename E>
|
---|
| 743 | inline vector3D (const vector3D <E> & other)
|
---|
| 744 | : DescV3< T, vector3D< T > > (other) {}
|
---|
| 745 |
|
---|
| 746 | // Spherical adapter
|
---|
| 747 | inline vector3D operator = (const SphericalCoords <T> & sphc)
|
---|
| 748 | {
|
---|
| 749 | this->x = sphc.r * sin(sphc.zenith) * cos(sphc.azimuth);
|
---|
| 750 | this->y = sphc.r * sin(sphc.zenith) * sin(sphc.azimuth);
|
---|
| 751 | this->z = sphc.r * cos(sphc.zenith);
|
---|
| 752 | }
|
---|
| 753 | template <typename E>
|
---|
| 754 | inline vector3D<E> & cast ()
|
---|
| 755 | {
|
---|
| 756 | return vector3D <E> (
|
---|
| 757 | static_cast<T> (this->other.x),
|
---|
| 758 | static_cast<T> (this->other.y),
|
---|
| 759 | static_cast<T> (this->other.z)
|
---|
| 760 | );
|
---|
| 761 | }
|
---|
| 762 |
|
---|
| 763 | // BEGIN ArithmeticVector INHERITANCE {
|
---|
| 764 | // Binary expression mappings
|
---|
| 765 | template <typename Expr>
|
---|
| 766 | inline typename Base::template ExpOpExp<typename Expr::ExprType>::Add operator + (const Expr & rval) const
|
---|
| 767 | { return typename Base::template ExpOpExp<typename Expr::ExprType>::Add (typename Base::ArgVec(*this), rval); }
|
---|
| 768 |
|
---|
| 769 | template <typename Expr>
|
---|
| 770 | inline typename Base::template ExpOpExp<typename Expr::ExprType>::Sub operator - (const Expr & rval) const
|
---|
| 771 | { return typename Base::template ExpOpExp<typename Expr::ExprType>::Sub (typename Base::ArgVec(*this), rval); }
|
---|
| 772 |
|
---|
| 773 | template <typename Expr>
|
---|
| 774 | inline typename enable_ifb< has_def< typename Expr::ExprType >::value, bool >::Type operator == (const Expr & rval) const
|
---|
| 775 | { return rval.equals(*this); }
|
---|
| 776 |
|
---|
| 777 | // Import dependent types
|
---|
| 778 | using typename Base::ExpNeg;
|
---|
| 779 | using typename Base::ExpScale;
|
---|
| 780 | using typename Base::ExpContract;
|
---|
| 781 | using typename Base::ExpAddScalar;
|
---|
| 782 | using typename Base::ExpAddVector;
|
---|
| 783 | using typename Base::ExpSubScalar;
|
---|
| 784 | using typename Base::ExpSubVector;
|
---|
| 785 |
|
---|
| 786 | using typename Base::VectorType;
|
---|
| 787 |
|
---|
| 788 | // Basic binary mappings
|
---|
| 789 | inline ExpNeg operator - () const { return this->neg(); }
|
---|
| 790 | inline ExpScale operator * (const T & n) const { return this->scale(n); }
|
---|
| 791 | inline ExpContract operator / (const T & n) const { return this->contract(n); }
|
---|
| 792 | inline ExpAddScalar operator + (const T & n) const { return this->add(n); }
|
---|
| 793 | inline ExpAddVector operator + (const VectorType & v) const { return this->add(v); }
|
---|
| 794 | inline ExpSubScalar operator - (const T & n) const { return this->sub(n); }
|
---|
| 795 | inline ExpSubVector operator - (const VectorType & v) const { return this->sub(v); }
|
---|
| 796 | // } END ArithmeticVector INHERITANCE
|
---|
| 797 |
|
---|
| 798 | // Shortcut mappings
|
---|
| 799 | inline T operator * (const vector3D<T> & v) const { return dot(v); }
|
---|
| 800 | inline bool operator || (const vector3D<T> & v) const { return orthogonal(v); }
|
---|
| 801 | inline const vector3D <T> operator & (const vector3D <T> & v) const { return cross(v); }
|
---|
| 802 |
|
---|
| 803 | inline bool operator == (const vector3D< T > & b) const { return equals(b); }
|
---|
| 804 | template <typename J> inline bool operator != (const vector3D <J> & other) const { return nequal(other); }
|
---|
| 805 | template <typename J> inline bool operator == (const vector3D <J> & other) const { return equals(other); }
|
---|
| 806 |
|
---|
| 807 | inline bool operator < (const T len) const { return lesser(len); }
|
---|
| 808 | inline bool operator > (const T len) const { return greater(len); }
|
---|
| 809 | inline bool operator <= (const T len) const { return lessequal(len); }
|
---|
| 810 | inline bool operator >= (const T len) const { return greatequal(len); }
|
---|
| 811 |
|
---|
| 812 | // Vector2 adapter
|
---|
| 813 | inline operator vector2D <T> () const { return vector2D <T> (this->x, this->y); }
|
---|
| 814 |
|
---|
| 815 | // 3D-specific operations
|
---|
| 816 | inline T dot (const vector3D<T> & v) const
|
---|
| 817 | { return this->x * v.x + this->y * v.y + this->z * v.z; }
|
---|
| 818 | inline bool orthogonal (const vector3D<T> & v) const
|
---|
| 819 | { return Matrix3D(vector3D<T>(1,1,1), *this, v) == 0; }
|
---|
| 820 | inline const vector3D <T> cross (const vector3D <T> & v) const
|
---|
| 821 | {
|
---|
| 822 | return vector3D <T> (
|
---|
| 823 | this->y*v.z - this->z*v.y,
|
---|
| 824 | this->z*v.x - this->x*v.z,
|
---|
| 825 | this->x*v.y - this->y*v.x
|
---|
| 826 | );
|
---|
| 827 | }
|
---|
| 828 |
|
---|
| 829 | // Length
|
---|
| 830 | inline T magSQ () const { return static_cast <T> (SQ(this->x) + SQ(this->y) + SQ(this->z)); }
|
---|
| 831 | inline T magnitude () const { return static_cast <T> (sqrt(magSQ())); }
|
---|
| 832 | inline vector3D <T> normalize () const
|
---|
| 833 | {
|
---|
| 834 | const T m = magnitude();
|
---|
| 835 |
|
---|
| 836 | if (m == 0)
|
---|
| 837 | return vector3D <T> (0,0,0);
|
---|
| 838 | else
|
---|
| 839 | return vector3D<T> (
|
---|
| 840 | this->x / m,
|
---|
| 841 | this->y / m,
|
---|
| 842 | this->z / m
|
---|
| 843 | );
|
---|
| 844 | }
|
---|
| 845 |
|
---|
| 846 | // Equivalence
|
---|
| 847 | inline bool equals (const vector3D< T > & b) const
|
---|
| 848 | { return this->x == b.x && this->y == b.y && this->z == b.z; }
|
---|
| 849 |
|
---|
| 850 | template <typename J>
|
---|
| 851 | inline bool nequal (const vector3D <J> & other) const
|
---|
| 852 | { return this->x != other.x || this->y != other.y || this->z != other.z; }
|
---|
| 853 |
|
---|
| 854 | template <typename J>
|
---|
| 855 | inline bool equals (const vector3D <J> & other) const
|
---|
| 856 | { return this->x == other.x && this->y == other.y && this->z == other.z; }
|
---|
| 857 |
|
---|
| 858 | // Length comparisons
|
---|
| 859 | inline bool lesser (const T len) const
|
---|
| 860 | { return magSQ() < SQ(len); }
|
---|
| 861 | inline bool greater (const T len) const
|
---|
| 862 | { return magSQ() > SQ(len); }
|
---|
| 863 | inline bool lessequal (const T len) const
|
---|
| 864 | { return magSQ() <= SQ(len); }
|
---|
| 865 | inline bool greatequal (const T len) const
|
---|
| 866 | { return magSQ() >= SQ(len); }
|
---|
| 867 |
|
---|
| 868 | inline vector2D <T> v2D() const { return vector2D <T> (this->x, this->y); }
|
---|
| 869 |
|
---|
| 870 | // Accumulate scalar
|
---|
| 871 | inline const vector3D <T> & operator += (const T & n)
|
---|
| 872 | {
|
---|
| 873 | this->x += n;
|
---|
| 874 | this->y += n;
|
---|
| 875 | this->z += n;
|
---|
| 876 | }
|
---|
| 877 |
|
---|
| 878 | // Accumulate vector
|
---|
| 879 | inline const vector3D <T> & operator += (const vector3D<T> & v)
|
---|
| 880 | {
|
---|
| 881 | this->x += v.x;
|
---|
| 882 | this->y += v.y;
|
---|
| 883 | this->z += v.z;
|
---|
| 884 |
|
---|
| 885 | return *this;
|
---|
| 886 | }
|
---|
| 887 |
|
---|
| 888 | // Decrement by vector
|
---|
| 889 | inline const vector3D <T> & operator -= (const vector3D<T> & v)
|
---|
| 890 | {
|
---|
| 891 | this->x -= v.x;
|
---|
| 892 | this->y -= v.y;
|
---|
| 893 | this->z -= v.z;
|
---|
| 894 |
|
---|
| 895 | return *this;
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 | // Assignment
|
---|
| 899 | template <typename J>
|
---|
| 900 | inline vector3D <T> & operator = (const vector3D <J> & copy)
|
---|
| 901 | {
|
---|
| 902 | this->x = static_cast <T> (copy.x);
|
---|
| 903 | this->y = static_cast <T> (copy.y);
|
---|
| 904 | this->z = static_cast <T> (copy.z);
|
---|
| 905 |
|
---|
| 906 | return *this;
|
---|
| 907 | }
|
---|
| 908 |
|
---|
| 909 | // Scale vector
|
---|
| 910 | inline vector3D <T> & operator *= (const T factor)
|
---|
| 911 | {
|
---|
| 912 | this->x *= factor;
|
---|
| 913 | this->y *= factor;
|
---|
| 914 | this->z *= factor;
|
---|
| 915 | return *this;
|
---|
| 916 | }
|
---|
| 917 |
|
---|
| 918 | // Contract vector
|
---|
| 919 | inline vector3D <T> & operator /= (const T factor)
|
---|
| 920 | {
|
---|
| 921 | this->x /= factor;
|
---|
| 922 | this->y /= factor;
|
---|
| 923 | this->z /= factor;
|
---|
| 924 | return *this;
|
---|
| 925 | }
|
---|
| 926 | };
|
---|
| 927 | // Swap-operator mappings
|
---|
| 928 | template <typename V>
|
---|
| 929 | inline typename V::ExpScale operator * (const typename V::Precision f, const V & v)
|
---|
| 930 | { return v.scale(f); }
|
---|
| 931 |
|
---|
| 932 | template <typename T, typename RVal>
|
---|
| 933 | inline VExpr2< typename RVal::ExprType, VExpArg< T, RVal::DIMENSION >, VOpScale< T, RVal::DIMENSION >, RVal::DIMENSION >
|
---|
| 934 | operator * (const T f, const RVal & rval)
|
---|
| 935 | { return VExpr2< typename RVal::ExprType, VExpArg< T, RVal::DIMENSION >, VOpScale< T, RVal::DIMENSION >, RVal::DIMENSION > (rval, VExpArg< T, RVal::DIMENSION > (f)); }
|
---|
| 936 |
|
---|
| 937 | // *** Generic mappings ***
|
---|
| 938 | // ** Expressions **
|
---|
| 939 | template <typename E>
|
---|
| 940 | inline typename E::ExprType::Precision
|
---|
| 941 | MAG(const E & expr) { return MathOverrides::sqrt(expr.template reduce<VRedSqFn>()); }
|
---|
| 942 |
|
---|
| 943 | template <typename E>
|
---|
| 944 | inline typename E::ExprType::Precision
|
---|
| 945 | MAGSQ(const E & expr) { return expr.template reduce<VRedSqFn>(); }
|
---|
| 946 |
|
---|
| 947 | template <typename V>
|
---|
| 948 | inline typename V::VectorType::Precision
|
---|
| 949 | DOT(const V & a, const V & b) { return a * b; }
|
---|
| 950 |
|
---|
| 951 | template <typename V, typename Expr>
|
---|
| 952 | inline typename enable_ifb< andb< has_def< typename V::VectorType>::value, has_def< typename Expr::ExprType >::value >::value, typename V::Precision >::Type
|
---|
| 953 | DOT(const V & a, const Expr & b) { return b.template reduce< VRedDotVFn< V > > (VRedDotVFn< V >(a)); }
|
---|
| 954 |
|
---|
| 955 | template <typename Expr, typename V>
|
---|
| 956 | inline typename enable_ifb< andb< has_def< typename Expr::ExprType >::value, has_def< typename V::VectorType >::value >::value, typename Expr::Precision >::Type
|
---|
| 957 | DOT(const Expr & a, const V & b) { return a.template reduce< VRedDotVFn< V > > (VRedDotVFn< V >(b)); }
|
---|
| 958 |
|
---|
| 959 | template <typename LVal, typename RVal>
|
---|
| 960 | inline typename enable_ifb< andb< has_def< typename LVal::ExprType >::value, has_def< typename RVal::ExprType >::value >::value, typename LVal::Precision >::Type
|
---|
| 961 | DOT(const LVal & a, const RVal & b) { return a.template reduce<VRedDotEFn< RVal > > (VRedDotEFn< RVal > (b)); }
|
---|
| 962 |
|
---|
| 963 | template <typename A, typename B>
|
---|
| 964 | inline typename enable_ifb< andb< has_def<typename A::VExprTagType>::value, has_def<typename B::VExprTagType>::value >::value, typename A::Precision>::Type
|
---|
| 965 | ANGLE (const A & a, const B & b) { return acosf (DOT(a,b) / (MAG(a) * MAG(b))); }
|
---|
| 966 |
|
---|
| 967 | template <typename V>
|
---|
| 968 | inline typename V::VectorType::Precision
|
---|
| 969 | MAG(const V & v) { return v.magnitude(); }
|
---|
| 970 |
|
---|
| 971 | template <typename V>
|
---|
| 972 | inline typename V::VectorType::Precision
|
---|
| 973 | MAGSQ(const V & v) { return v.magSQ(); }
|
---|
| 974 |
|
---|
| 975 | template <typename V>
|
---|
| 976 | inline typename V::VectorType
|
---|
| 977 | U(const V & a) { return a.normalize(); }
|
---|
| 978 |
|
---|
| 979 | template <typename Expr, typename V>
|
---|
| 980 | inline typename enable_ifb< andb< has_def< typename Expr::ExprType >::value, has_def< typename V::VectorType >::value >::value >::Type
|
---|
| 981 | U(const Expr & a) { return V(a.normalize()); }
|
---|
| 982 |
|
---|
| 983 | template < typename TNew, typename E >
|
---|
| 984 | inline VExpr1< E, VOpCast< typename E::ExprType::Precision, TNew >, E::ExprType::DIMENSION >
|
---|
| 985 | CAST(const E & expr) { return VExpr1< E, VOpCast< typename E::ExprType::Precision, TNew >, E::ExprType::DIMENSION > (expr); }
|
---|
| 986 |
|
---|
| 987 | typedef vector2D<float> vector2Df;
|
---|
| 988 | typedef vector2D<double> vector2Dd;
|
---|
| 989 | typedef vector3D<float> vector3Df;
|
---|
| 990 | typedef vector3D<double> vector3Dd;
|
---|
| 991 |
|
---|
| 992 | // Spherical coordinates, definition taken from http://mathworld.wolfram.com/SphericalCoordinates.html
|
---|
| 993 | template <typename T>
|
---|
| 994 | class SphericalCoords : private MathOverrides
|
---|
| 995 | {
|
---|
| 996 | public:
|
---|
| 997 | typedef T Precision;
|
---|
| 998 |
|
---|
| 999 | T r;
|
---|
| 1000 | float
|
---|
| 1001 | zenith, // The circle with a vertical bar through it, thus represents the polar angle
|
---|
| 1002 | azimuth; // Looks like "theta", circle with horizontal bar through it, thus represents the angle in the x/y plane
|
---|
| 1003 |
|
---|
| 1004 | inline SphericalCoords () : r(0), zenith(0), azimuth(0) {}
|
---|
| 1005 |
|
---|
| 1006 | inline SphericalCoords (const vector3D <T> & v)
|
---|
| 1007 | : r(static_cast< T > (sqrt(SQ(v.x) + SQ(v.y) + SQ(v.z)))),
|
---|
| 1008 | zenith(atan2f(static_cast< float > (v.y), static_cast< float > (v.x))),
|
---|
| 1009 | azimuth(0)
|
---|
| 1010 | {
|
---|
| 1011 | if (r != 0)
|
---|
| 1012 | azimuth = acos(static_cast< float > (v.z) / static_cast< float > (r));
|
---|
| 1013 | }
|
---|
| 1014 | inline SphericalCoords (const T r, const float zenith, const float azimuth)
|
---|
| 1015 | : r(r), zenith(zenith), azimuth(azimuth) {}
|
---|
| 1016 |
|
---|
| 1017 | inline SphericalCoords <T> & operator = (const vector3D <T> & v)
|
---|
| 1018 | {
|
---|
| 1019 | r = sqrt(SQ(v.x) + SQ(v.y) + SQ(v.z));
|
---|
| 1020 |
|
---|
| 1021 | azimuth = atan2(
|
---|
| 1022 | static_cast< float > (v.y),
|
---|
| 1023 | static_cast< float > (v.x)
|
---|
| 1024 | );
|
---|
| 1025 |
|
---|
| 1026 | if (r != 0)
|
---|
| 1027 | zenith = acos(
|
---|
| 1028 | static_cast< float > (v.z)
|
---|
| 1029 | /
|
---|
| 1030 | static_cast< float > (r)
|
---|
| 1031 | );
|
---|
| 1032 |
|
---|
| 1033 | return *this;
|
---|
| 1034 | }
|
---|
| 1035 | inline const vector3D <T> operator + (const vector3D <T> rval) const { return static_cast <const vector3D<T> > (*this) + rval; }
|
---|
| 1036 | inline operator const vector3D <T> () const
|
---|
| 1037 | {
|
---|
| 1038 | return vector3D <T>
|
---|
| 1039 | (
|
---|
| 1040 | static_cast< T > (static_cast< float > (r) * sin(zenith) * cos(azimuth)),
|
---|
| 1041 | static_cast< T > (static_cast< float > (r) * sin(zenith) * sin(azimuth)),
|
---|
| 1042 | static_cast< T > (static_cast< float > (r) * cos(zenith))
|
---|
| 1043 | );
|
---|
| 1044 | }
|
---|
| 1045 | inline SphericalCoords <T> & operator = (const CylindricalCoords <T> & c)
|
---|
| 1046 | {
|
---|
| 1047 | r = static_cast< T > (sqrt(SQ(c.p) + SQ(c.z)));
|
---|
| 1048 | zenith = atan2(c.p, c.z);
|
---|
| 1049 | azimuth = c.azimuth;
|
---|
| 1050 | return *this;
|
---|
| 1051 | }
|
---|
| 1052 | inline operator const CylindricalCoords <T> () const
|
---|
| 1053 | {
|
---|
| 1054 | return CylindricalCoords <T>
|
---|
| 1055 | (
|
---|
| 1056 | static_cast< T > (static_cast< float > (r) * sin(zenith)),
|
---|
| 1057 | azimuth,
|
---|
| 1058 | static_cast< T > (static_cast< float > (r) * cos(zenith))
|
---|
| 1059 | );
|
---|
| 1060 | }
|
---|
| 1061 | };
|
---|
| 1062 |
|
---|
| 1063 | template <typename T>
|
---|
| 1064 | class PolarCoords
|
---|
| 1065 | {
|
---|
| 1066 | private:
|
---|
| 1067 | inline PolarCoords <T> & assign (const T x, const T y)
|
---|
| 1068 | {
|
---|
| 1069 | p = sqrt(SQ(x) + SQ(y));
|
---|
| 1070 | azimuth = atan2(y, x);
|
---|
| 1071 | return *this;
|
---|
| 1072 | }
|
---|
| 1073 |
|
---|
| 1074 | public:
|
---|
| 1075 | T p;
|
---|
| 1076 | float azimuth;
|
---|
| 1077 |
|
---|
| 1078 | inline PolarCoords () : p(0), azimuth(0) {}
|
---|
| 1079 | inline PolarCoords (const vector2D <T> & v) : p(sqrt(SQ(v.x)) + sqrt(SQ(v.y))), azimuth(atan2(v.y, v.x)) {}
|
---|
| 1080 |
|
---|
| 1081 | inline PolarCoords (const T p, const float azimuth)
|
---|
| 1082 | : p(p), azimuth(azimuth) {}
|
---|
| 1083 |
|
---|
| 1084 | inline PolarCoords <T> & operator = (const vector2D <T> & v)
|
---|
| 1085 | { return assign(v.x, v.y); }
|
---|
| 1086 | inline PolarCoords <T> & operator = (const vector3D <T> & v)
|
---|
| 1087 | { return assign(v.x, v.y); }
|
---|
| 1088 |
|
---|
| 1089 | template <typename J>
|
---|
| 1090 | inline operator const vector2D <J> () const
|
---|
| 1091 | {
|
---|
| 1092 | return vector2D <J> (
|
---|
| 1093 | static_cast <J> (static_cast <double> (p) * cos(azimuth)),
|
---|
| 1094 | static_cast <J> (static_cast <double> (p) * sin(azimuth))
|
---|
| 1095 | );
|
---|
| 1096 | }
|
---|
| 1097 | inline PolarCoords <T> & operator = (const SphericalCoords <T> & s)
|
---|
| 1098 | {
|
---|
| 1099 | p = s.r * sin(s.zenith);
|
---|
| 1100 | azimuth = s.azimuth;
|
---|
| 1101 | return *this;
|
---|
| 1102 | }
|
---|
| 1103 | };
|
---|
| 1104 |
|
---|
| 1105 | template <typename T>
|
---|
| 1106 | class CylindricalCoords : public PolarCoords <T>
|
---|
| 1107 | {
|
---|
| 1108 | public:
|
---|
| 1109 | T z;
|
---|
| 1110 |
|
---|
| 1111 | inline CylindricalCoords () : PolarCoords<T> (0, 0), z(0) {}
|
---|
| 1112 | inline CylindricalCoords (const vector3D <T> & v) : PolarCoords<T> (v), z(v.z) {}
|
---|
| 1113 |
|
---|
| 1114 | inline CylindricalCoords (const T p, const float azimuth, const T z)
|
---|
| 1115 | : PolarCoords<T>(p, azimuth), z(z) {}
|
---|
| 1116 |
|
---|
| 1117 | inline CylindricalCoords <T> & operator = (const vector3D <T> & v)
|
---|
| 1118 | {
|
---|
| 1119 | PolarCoords <T>::operator = (v);
|
---|
| 1120 | z = v.z;
|
---|
| 1121 | return *this;
|
---|
| 1122 | }
|
---|
| 1123 | inline CylindricalCoords <T> & operator = (const SphericalCoords <T> & s)
|
---|
| 1124 | {
|
---|
| 1125 | PolarCoords <T>::operator = (s);
|
---|
| 1126 | z = s.r * cos(s.zenith);
|
---|
| 1127 | return *this;
|
---|
| 1128 | }
|
---|
| 1129 | template <typename J>
|
---|
| 1130 | inline operator const vector3D <J> () const
|
---|
| 1131 | {
|
---|
| 1132 | return vector3D <J> (
|
---|
| 1133 | static_cast <J> (static_cast <double> (this->p) * cos(this->azimuth)),
|
---|
| 1134 | static_cast <J> (static_cast <double> (this->p) * sin(this->azimuth)),
|
---|
| 1135 | static_cast <J> (z)
|
---|
| 1136 | );
|
---|
| 1137 | }
|
---|
| 1138 | inline operator const SphericalCoords <T> () const
|
---|
| 1139 | {
|
---|
| 1140 | return SphericalCoords <T>
|
---|
| 1141 | (
|
---|
| 1142 | sqrt(SQ(this->p) + SQ(z)),
|
---|
| 1143 | atan2(this->p, z),
|
---|
| 1144 | this->azimuth
|
---|
| 1145 | );
|
---|
| 1146 | }
|
---|
| 1147 | };
|
---|
| 1148 |
|
---|
| 1149 | template <typename T>
|
---|
| 1150 | class Matrix3D
|
---|
| 1151 | {
|
---|
| 1152 | public:
|
---|
| 1153 | typedef T Precision;
|
---|
| 1154 |
|
---|
| 1155 | T values [3][3];
|
---|
| 1156 |
|
---|
| 1157 | inline Matrix3D (const T a1, const T b2, const T c3)
|
---|
| 1158 | {
|
---|
| 1159 | values[0][0] = a1; values[0][1] = 0; values[0][2] = 0;
|
---|
| 1160 | values[1][0] = 0; values[1][1] = b2; values[1][2] = 0;
|
---|
| 1161 | values[2][0] = 0; values[2][1] = 0; values[2][2] = c3;
|
---|
| 1162 | }
|
---|
| 1163 | inline Matrix3D (
|
---|
| 1164 | const T a1, const T b1, const T c1,
|
---|
| 1165 | const T a2, const T b2, const T c2,
|
---|
| 1166 | const T a3, const T b3, const T c3
|
---|
| 1167 | )
|
---|
| 1168 | {
|
---|
| 1169 | values[0][0] = a1; values[0][1] = b1; values[0][2] = c1;
|
---|
| 1170 | values[1][0] = a2; values[1][1] = b2; values[1][2] = c2;
|
---|
| 1171 | values[2][0] = a3; values[2][1] = b3; values[2][2] = c3;
|
---|
| 1172 | }
|
---|
| 1173 | inline Matrix3D (
|
---|
| 1174 | const vector3D<T> & a, vector3D<T> b, vector3D<T> c
|
---|
| 1175 | )
|
---|
| 1176 | {
|
---|
| 1177 | values[0][0] = a.x; values[0][1] = a.y; values[0][2] = a.z;
|
---|
| 1178 | values[1][0] = b.x; values[1][1] = b.y; values[1][2] = b.z;
|
---|
| 1179 | values[2][0] = c.x; values[2][1] = c.y; values[2][2] = c.z;
|
---|
| 1180 | }
|
---|
| 1181 |
|
---|
| 1182 | inline operator T ()
|
---|
| 1183 | {
|
---|
| 1184 | return
|
---|
| 1185 | values[0][0] * values[1][1] * values[2][2] -
|
---|
| 1186 | values[0][0] * values[1][2] * values[2][1] +
|
---|
| 1187 | values[0][1] * values[1][2] * values[2][0] -
|
---|
| 1188 | values[0][1] * values[1][0] * values[2][2] +
|
---|
| 1189 | values[0][2] * values[1][0] * values[2][1] -
|
---|
| 1190 | values[0][2] * values[1][1] * values[2][0];
|
---|
| 1191 | }
|
---|
| 1192 | inline mars::vector3D <T> operator * (const mars::vector3D <T> v) const
|
---|
| 1193 | {
|
---|
| 1194 | return vector3D<T> (
|
---|
| 1195 | v.x * values[0][0] + v.y * values[0][1] + v.z * values[0][2],
|
---|
| 1196 | v.x * values[1][0] + v.y * values[1][1] + v.z * values[1][2],
|
---|
| 1197 | v.x * values[2][0] + v.y * values[2][1] + v.z * values[2][2]
|
---|
| 1198 | );
|
---|
| 1199 | }
|
---|
| 1200 | inline mars::Matrix3D <T> transpose () const
|
---|
| 1201 | {
|
---|
| 1202 | return Matrix3D (
|
---|
| 1203 | values[0][0], values[1][0], values[2][0],
|
---|
| 1204 | values[0][1], values[1][1], values[2][1],
|
---|
| 1205 | values[0][2], values[1][2], values[2][2]
|
---|
| 1206 | );
|
---|
| 1207 | }
|
---|
| 1208 | static inline mars::Matrix3D <T> rotateZ (float theta)
|
---|
| 1209 | {
|
---|
| 1210 | return Matrix3D <T> (
|
---|
| 1211 | cos(theta), -sin(theta), 0,
|
---|
| 1212 | sin(theta), cos(theta), 0,
|
---|
| 1213 | 0, 0, 1
|
---|
| 1214 | );
|
---|
| 1215 | }
|
---|
| 1216 | };
|
---|
| 1217 |
|
---|
| 1218 | template <typename T>
|
---|
| 1219 | class Quaternion : public DescQ< T, Quaternion< T > >
|
---|
| 1220 | {
|
---|
| 1221 | public:
|
---|
| 1222 | inline Quaternion (const T w, const T x, const T y, const T z)
|
---|
| 1223 | : DescQ< T, Quaternion< T > >(x, y, z, w) {}
|
---|
| 1224 | inline Quaternion (const vector3D <T> & vec)
|
---|
| 1225 | : DescQ< T, Quaternion< T > >(vec) {}
|
---|
| 1226 | inline Quaternion (const T s, const vector3D <T> & v)
|
---|
| 1227 | : DescQ< T, Quaternion< T > >(s, v) {}
|
---|
| 1228 | inline Quaternion ()
|
---|
| 1229 | : DescQ< T, Quaternion< T > >() {}
|
---|
| 1230 |
|
---|
| 1231 | static
|
---|
| 1232 | inline Quaternion <T>
|
---|
| 1233 | rotation (const T theta, const vector3D <T> & u)
|
---|
| 1234 | {
|
---|
| 1235 | return Quaternion <T> (
|
---|
| 1236 | cos(theta / 2),
|
---|
| 1237 | u * sin(theta / 2)
|
---|
| 1238 | );
|
---|
| 1239 | }
|
---|
| 1240 |
|
---|
| 1241 | inline const Quaternion <T> operator * (const Quaternion <T> & q) const
|
---|
| 1242 | {
|
---|
| 1243 | const T s1 = this->w, s2 = q.w;
|
---|
| 1244 | const vector3D <T> & v1 = this->v(), v2 = q.v();
|
---|
| 1245 |
|
---|
| 1246 | return Quaternion <T> (
|
---|
| 1247 | s1 * s2 - (v1 * v2),
|
---|
| 1248 | (s1 * v2) + (s2 * v1) + (v1 & v2)
|
---|
| 1249 | );
|
---|
| 1250 | }
|
---|
| 1251 | inline const Quaternion <T> operator - () const
|
---|
| 1252 | {
|
---|
| 1253 | return Quaternion <T> (this->w, -this->x, -this->y, -this->z);
|
---|
| 1254 | }
|
---|
| 1255 | inline const Quaternion <T> operator ! () const
|
---|
| 1256 | {
|
---|
| 1257 | const Quaternion <T> qq = operator - ();
|
---|
| 1258 | return qq / (operator * (qq));
|
---|
| 1259 | }
|
---|
| 1260 | inline const Quaternion <T> operator / (const Quaternion <T> & q) const
|
---|
| 1261 | {
|
---|
| 1262 | const T divisor = (q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
|
---|
| 1263 | return Quaternion <T> (
|
---|
| 1264 | (q.x*this->x + q.y*this->y + q.z*this->z + q.w*this->w) / divisor,
|
---|
| 1265 | (this->x*q.w - this->y*q.z + this->z*q.y - this->w*q.x) / divisor,
|
---|
| 1266 | (this->x*q.z + this->y*q.w - this->z*q.x - this->w*q.y) / divisor,
|
---|
| 1267 | (this->y*q.x + this->z*q.w - this->x*q.y - this->w*q.z) / divisor
|
---|
| 1268 | );
|
---|
| 1269 | }
|
---|
| 1270 | inline const Quaternion <T> operator & (const Quaternion <T> & q) const
|
---|
| 1271 | {
|
---|
| 1272 | return operator * (q * operator ! ());
|
---|
| 1273 | }
|
---|
| 1274 | inline operator vector3D <T> () const
|
---|
| 1275 | {
|
---|
| 1276 | return this->v();
|
---|
| 1277 | }
|
---|
| 1278 | };
|
---|
| 1279 | }
|
---|
| 1280 |
|
---|
| 1281 | #endif
|
---|